Nuclear-L1 Norm Joint Regression for Face Reconstruction and Recognition
نویسندگان
چکیده
Recognizing a face with significant lighting, disguise and occlusion variations is an interesting and challenging problem in pattern recognition. To address this problem, many regression based methods, represented by sparse representation classifier (SRC), are presented recently. SRC uses the L1-norm to characterize the pixel-level sparse noise but ignore the spatial information of noise. In this paper, we find that nuclear-norm is good for characterizing image-wise structural noise, and thus we use the nuclear norm and L1-norm to jointly characterize the error image in regression model. Our experimental results demonstrate that the proposed method is more effective than state-of-the-art regression methods for face reconstruction and recognition.
منابع مشابه
Head Pose Estimation of Occluded Faces using Regularized Regression
This paper presents regression methods for estimation of head pose from occluded 2-D face images. The process primarily involves reconstructing a face from its occluded image, followed by classification. Typical methods for reconstruction assume that the pixel errors of the occluded regions are independent. However, such an assumption is not true in the case of occlusion, because of its inheren...
متن کاملImage Reconstruction in Compressed Remote Sensing with Low-rank and L1-norm Regularization
In this paper, we proposed a new model with nuclear-norm and L1-norm regularization for image reconstruction in aerospace remote sensing. The curvelet based L1-norm regularization promotes sparse reconstruction, while the low-rank based nuclear-norm regularization leads to a principle component solution. Split Bregman method is used to solve this problem. Numerical experiments show the proposed...
متن کاملRobust nuclear norm regularized regression for face recognition with occlusion
Recently, regression analysis based classification methods are popular for robust face recognition. These methods use a pixel-based error model, which assumes that errors of pixels are independent. This assumption does not hold in the case of contiguous occlusion, where the errors are spatially correlated. Furthermore, these methods ignore the whole structure of the error image. Nuclear norm as...
متن کاملFace frontalization for Alignment and Recognition
Recently, it was shown that excellent results can be achieved in both face landmark localization and pose-invariant face recognition. These breakthroughs are attributed to the efforts of the community to manually annotate facial images in many different poses and to collect 3D faces data. In this paper, we propose a novel method for joint face landmark localization and frontal face reconstructi...
متن کاملJoint sparse representation for video-based face recognition
Video-based Face Recognition (VFR) can be converted into the problem of measuring the similarity of two image sets, where the examples from a video clip construct one image set. In this paper, we consider face images from each clip as an ensemble and formulate VFR into the Joint Sparse Representation (JSR) problem. In JSR, to adaptively learn the sparse representation of a probe clip, we simult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014